Andrea von Braun Stiftung
voneinander wissen
| Dissertation

Ansätze zur Quantengravitation - fundamentale Physik am Rande des Begriffs der Naturwissenschaft

Dr. Johannes Thürigen


In einigen Ansätzen zu einer Quantentheorie der Gravitation wie Gruppenfeldtheorie und Schleifenquantengravitation zeigt sich, dass Zustände und Entwicklungen der geometrischen Freiheitsgrade auf einer diskreten Raumzeit basieren. Die dringendste Frage ist dann, wie die glatten Geometrien der Allgemeinen Relativitätstheorie, beschrieben durch geeignete geometrische Beobachtungsgrößen, aus solch diskreten Quantengeometrien im semiklassischen und Kontinuums-Limes hervorgehen. Hier nehme ich die Frage geeigneter Beobachtungsgrößen mit Fokus auf die effektive Dimension der Quantengeometrien in Angriff. Dazu gebe ich eine rein kombinatorische Beschreibung der zugrunde liegenden diskreten Strukturen. Als Nebenthema erlaubt dies eine Erweiterung der Gruppenfeldtheorie, so dass diese den kombinatorisch größeren kinematischen Zustandsraum der Schleifenquantengravitation abdeckt. Zudem führe ich einen diskreten Differentialrechnungskalkül für Felder auf solch fundamental diskreten Geometrien mit einem speziellen Augenmerk auf dem Laplace-Operator ein. Dies ermöglicht die Definition der Dimensionsobservablen für Quantengeometrien. Die Untersuchung verschiedener Klassen von Quantengeometrien zeigt allgemein, dass die spektrale Dimension stärker von der zugrunde liegenden kombinatorischen Struktur als von den Details der zusätzlichen geometrischen Daten darauf abhängt. Semiklassische Zustände in Schleifenquantengravitation approximieren die entsprechenden klassischen Geometrien gut ohne Anzeichen für stärkere Quanteneffekte. Dagegen zeigt sich im Kontext eines allgemeineren, auf analytischen Lösungen basierenden Modells für Zustände, die aus Überlagerungen einer großen Anzahl von Komplexen bestehen, ein Fluss der spektralen Dimension von der topologischen Dimension d bei kleinen Energieskalen hin zu einem reellen Wert zwischen 0 und d bei hohen Energien. Im Spezialfall 1 erlauben diese Resultate, die Quantengeometrie als effektiv fraktal aufzufassen.